Reactivity of CO2 on the surfaces of magnetite (Fe3O4), greigite (Fe3S4) and mackinawite (FeS).
نویسندگان
چکیده
The growing environmental, industrial and commercial interests in understanding the processes of carbon dioxide (CO2) capture and conversion have led us to simulate, by means of density functional theory calculations, the application of different iron oxide and sulfide minerals to capture, activate and catalytically dissociate this molecule. We have chosen the {001} and {111} surfaces of the spinel-structured magnetite (Fe3O4) and its isostructural sulfide counterpart greigite (Fe3S4), which are both materials with the Fe cations in the 2+/3+ mixed valence state, as well as mackinawite (tetragonal FeS), in which all iron ions are in the ferrous oxidation state. This selection of iron-bearing compounds provides us with understanding of the effect of the composition, stoichiometry, structure and oxidation state on the catalytic activation of CO2 The largest adsorption energies are released for the interaction with the Fe3O4 surfaces, which also corresponds to the biggest conformational changes of the CO2 molecule. Our results suggest that the Fe3S4 surfaces are unable to activate the CO2 molecule, while a major charge transfer takes place on FeS{111}, effectively activating the CO2 molecule. The thermodynamic and kinetic profiles for the catalytic dissociation of CO2 into CO and O show that this process is feasible only on the FeS{111} surface. The findings reported here show that these minerals show promise for future CO2 capture and conversion technologies, ensuring a sustainable future for society.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
منابع مشابه
Catalytic water dissociation by greigite Fe3S4 surfaces: density functional theory study
The iron sulfide mineral greigite, Fe3S4, has shown promising capability as a hydrogenating catalyst, in particular in the reduction of carbon dioxide to produce small organic molecules under mild conditions. We employed density functional theory calculations to investigate the {001},{011} and {111} surfaces of this iron thiospinel material, as well as the production of hydrogen ad-atoms from t...
متن کاملTransformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study
Synthetic mackinawite (tetragonal FeS) has been found to transform rapidly to greigite (Fe3S4) above ;373 K during heating experiments, as observed by in situ X-ray diffraction. Using monochromatic synchrotron radiation (l 5 0.60233 Å), we measured the unit-cell parameters of both synthetic mackinawite between 293 and 453 K and of greigite formed from this mackinawite between 293 and 593 K. The...
متن کاملCatalytic water dissociation by greigite Fe 3 S 4 surfaces : density functional theory study
The iron sulfide mineral greigite, Fe3S4, has shown promising capability as a hydrogenating catalyst, in particular in the reduction of carbon dioxide to produce small organic molecules under mild conditions. We employed density functional theory calculations to investigate the {001}, {011} and {111} surfaces of this iron thiospinel material, as well as the production of hydrogen ad-atoms from ...
متن کاملA comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4.
Greigite (Fe3S4) and its analogue oxide, magnetite (Fe3O4), are natural minerals with an inverse spinel structure whose atomic-level properties may be difficult to investigate experimentally. Here, [D. Rickard and G. W. Luther, Chem. Rev. 107, 514 (2007)] we have calculated the elastic constants and other macroscopic mechanical properties by applying elastic strains on the unit cells. We also h...
متن کاملgreigite Fe 3 S 4 surfaces : density functional theory study
The iron sulfide mineral greigite, Fe3S4, has shown promising capability as a hydrogenating catalyst, in particular in the reduction of carbon dioxide to produce small organic molecules under mild conditions. We employed density functional theory calculations to investigate the {001}, {011} and {111} surfaces of this iron thiospinel material, as well as the production of hydrogen ad-atoms from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 376 2110 شماره
صفحات -
تاریخ انتشار 2018